Optimasi Lintasan Produksi dengan Metode Ranked Positional Weight (RPW) dan Algoritma Genetik (GA)
| Authors | ||
| Issue | Vol 8 No 1 (2025): Talenta Conference Series: Energy and Engineering (EE) | |
| Section | Articles | |
| Section |
Copyright (c) 2025 Talenta Conference Series: Energy and Engineering (EE) ![]() This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
|
| Galley | ||
| DOI: | https://doi.org/10.32734/ee.v8i1.2650 | |
| Keywords: | Algoritma Genetika Efisiensi Manufaktur Penyeimbangan Lintasan Produksi Ranked Positional Weight Genetic Algorithm Manufacturing Efficiency Production Line Optimization | |
| Published | 2025-07-28 |
Abstract
Penelitian ini bertujuan untuk meningkatkan efisiensi lintasan produksi di Bengkel Las Cahaya menggunakan metode Ranked Positional Weight (RPW) dan Algoritma Genetik (GA). Sebelum penerapan kedua metode tersebut, efisiensi lintasan produksi hanya mencapai 32,92%, dengan balance delay sebesar 67,08%, yang menunjukkan ketidakseimbangan beban kerja antar stasiun kerja dan waktu idle yang tinggi. Metode RPW digunakan untuk mendistribusikan elemen kerja secara optimal berdasarkan bobot posisi, sedangkan GA digunakan untuk mencari solusi optimal dengan crossover dan mutasi. Hasilnya, efisiensi lintasan meningkat menjadi 75,90%, sementara balance delay berkurang menjadi 24,10%, menunjukkan bahwa distribusi beban kerja antar stasiun menjadi lebih merata. Smoothing index yang semula tinggi berkurang menjadi 504,93, menandakan perbaikan dalam keseragaman beban kerja antar stasiun. Penerapan GA terbukti efektif dalam mengurangi bottleneck di stasiun pengecatan dan pengelasan, yang sebelumnya menjadi hambatan utama dalam alur produksi. Secara keseluruhan, penggunaan RPW dan GA berhasil meningkatkan line efficiency, mengurangi waktu idle, dan meningkatkan produktivitas di Bengkel Las Cahaya. Penelitian ini memberikan kontribusi penting dalam optimasi lintasan produksi untuk industri manufaktur kecil.
This study aims to improve production line efficiency at Bengkel Las Cahaya using Ranked Positional Weight (RPW) and Genetic Algorithm (GA) methods. Before the application of these methods, the production line efficiency was only 32.92%, with a balance delay of 67.08%, indicating an imbalance in workload distribution across workstations and high idle time. The RPW method was used to optimally distribute work elements based on positional weights, while GA was applied to find optimal solutions through crossover and mutation. As a result, line efficiency increased to 75.90%, while balance delay decreased to 24.10%, indicating a more balanced distribution of workload across workstations. The smoothing index, which was previously high, decreased to 504.93, reflecting improved workload uniformity. The application of GA proved effective in reducing bottlenecks at the painting and welding stations, which were previously the main production barriers. Overall, the use of RPW and GA successfully enhanced line efficiency, reduced idle time, and improved productivity at Bengkel Las Cahaya. This study provides a valuable contribution to production line optimization for small-scale manufacturing industries.






