Penentuan Pola Permintaan Lumpy Dan Erratic Berdasarkan Peramalan Permintaan Sparepart Produksi Di PT Petrokimia
| Authors | ||
| Issue | Vol 8 No 1 (2025): Talenta Conference Series: Energy and Engineering (EE) | |
| Section | Articles | |
| Section |
Copyright (c) 2025 Talenta Conference Series: Energy and Engineering (EE) ![]() This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
|
| Galley | ||
| DOI: | https://doi.org/10.32734/ee.v8i1.2644 | |
| Keywords: | Forecasting Pola ermintaan lumpy Pola permintaan erratic Klasifikasi ADI-CV Lumpy Demand Pattern Erratic Demand Pattern ADI-CV Classification | |
| Published | 2025-07-28 |
Abstract
Pengelolaan persediaan sparepart produksi merupakan elemen krusial dalam menjaga kontinuitas operasional industri, khususnya dalam menghadapi permintaan yang tidak teratur. PT Petrokimia Gresik menghadapi permasalahan terkait kelebihan dan kekurangan stok pada material plate akibat lonjakan permintaan yang tidak terprediksi. Penelitian ini bertujuan untuk mengidentifikasi pola permintaan material menjadi kategori lumpy dan erratic menggunakan analisis ADI-CV, serta menentukan metode peramalan yang paling sesuai untuk masing-masing pola. Metode forecasting yang digunakan mencakup Croston dan Syntetos-Boylan Approximation (SBA) untuk pola lumpy, serta Holt-Winters dan Double Exponential Smoothing untuk pola erratic. Evaluasi akurasi dilakukan menggunakan indikator error seperti Mean Error, MAD, MSE, RMSE, dan Tracking Signal. Hasil penelitian menunjukkan bahwa pemilihan metode peramalan yang tepat berdasarkan karakteristik pola permintaan dapat mengurangi tingkat kesalahan prediksi dan meningkatkan efisiensi manajemen persediaan di lingkungan industri manufaktur. Temuan ini diharapkan dapat dijadikan acuan dalam penyusunan strategi pengadaan dan perencanaan maintenance yang lebih responsif dan optimal.
Inventory management of production spare parts is a crucial element in maintaining operational continuity in the industrial sector, especially when facing irregular demand. PT Petrokimia Gresik is experiencing issues related to both overstock and stockouts of plate materials due to unpredictable demand surges. This study aims to identify demand patterns of the materials, categorizing them as lumpy and erratic using the ADI-CV analysis, and to determine the most appropriate forecasting method for each pattern. The forecasting methods used include Croston and Syntetos-Boylan Approximation (SBA) for lumpy patterns, as well as Holt-Winters and Double Exponential Smoothing for erratic patterns. Forecast accuracy is evaluated using error indicators such as Mean Error, MAD, MSE, RMSE, and Tracking Signal. The results indicate that selecting the appropriate forecasting method based on demand pattern characteristics can reduce prediction errors and improve inventory management efficiency in the manufacturing environment. These findings are expected to serve as a reference in developing more responsive and optimal procurement and maintenance planning strategies.






